2025
- Flexible Gravitational-Wave Parameter Estimation with Transformers
Annalena Kofler, Maximilian Dax, Stephen R. Green, Jonas Wildberger, Nihar Gupte, Jakob H. Macke, Jonathan Gair, Alessandra Buonanno, Bernhard Schölkopf
Accepted at Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
arXiv
Tutorial
Models
Poster
- Fast and accurate parameter estimation of high-redshift sources with the Einstein Telescope
Filippo Santoliquido, Jacopo Tissino, Ulyana Dupletsa, Marica Branchesi, Jan Harms, Manuel Arca Sedda, Maximilian Dax, Annalena Kofler, Stephen R Green, Nihar Gupte, Isobel M Romero-Shaw, Emanuele Berti
Physical Review D 112 (10), 103015, November 2025
arXiv
Paper
- Flow Annealed Importance Sampling Bootstrap meets Differentiable Particle Physics
Annalena Kofler, Vincent Stimper, Mikhail Mikhailenko, Michael Kagan, Lukas Heinrich
Machine Learning: Science and Technology, Focus on ML and the Physical Sciences, May 2025
Paper
Code
Data
Poster
Talk
- Flow Matching for Atmospheric Retrieval of Exoplanets: Where Reliability meets Adaptive Noise Levels
Timothy D. Gebhard, Jonas Wildberger, Maximilian Dax, Annalena Kofler, Daniel Angerhausen, Sascha P. Quanz, Bernhard Schölkopf
Astronomy & Astrophysics, 693 (A42), January 2025.
arXiv
Paper
Code
Data
DOI
Poster
2024